The Asymmetric Synthesis of (-)-Quinocarcin via a 1,3-Dipolar Cycloadditive Strategy

Philip Garner,* Wen Bin Ho, and Hunwoo Shin
Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078

Received June 21, 1993°

Abstract

Details of the asymmetric synthesis and complete structure elucidation of (-)-quinocarcin (1), an antitumor antibiotic that inhibits DNA (and in some systems RNA) synthesis, are reported. Key steps in the synthesis include the use of an auxiliary-controlled 1,3-dipolar cycloaddition reaction ($\mathbf{2 4}+\mathbf{2 5} \boldsymbol{\rightarrow 2 6}$) as well as an unprecedented intramolecular imide olefination ($30 \rightarrow 31$) to assemble the 3,8 -diazabicyclo[3.2.1]octane (CD ring) and isoquinoline (B ring) subunits of 1 in a stereo- and regiocontrolled manner. A comparison of the optical rotations of synthetic and natural quinocarcin confirms that the absolute configuration of this antibiotic is as depicted. Conclusive evidence for the ($2 \mathrm{a} R$) stereochemistry in 1 is provided by a NOESY experiment on quinocarcin citrate.

Introduction

Quinocarcin (1) ${ }^{1}$ is an antitumor antibiotic isolated from Streptomyces melanovinaceus representative of a group of isoquinoline alkaloids that incorporate the 3,8 -diazabicyclo[3.2.1]octane substructure. The antitumor activity of this compound

quinocarcin (1)

quinocarcinol ($2, X=H$)
DX-52-1 (3, $\mathrm{X}=\mathrm{CN}$)

cyanocycline $A(6, X=C N)$
apparently derives from its ability to inhibit DNA and/or RNA synthesis. ${ }^{2}$ This seems to occur at the template level via the irreversible and selective binding of these drugs to $\mathrm{dG}-\mathrm{dC}$ base pairs, although an oxidative degradation path has also been proposed for $1 .{ }^{3}$ The citrate salt of quinocarcin exhibits good activity against a variety of tumor systems. Quinocarcin itself is rather labile but can be converted to the more stable aminonitrile derivative DX-52-1 (3) by treatment with CN^{-}and 1 regenerated with AgNO_{3} or strong acid. ${ }^{4}$ A structurally related antibiotic named tetrazomine (4) was recently isolated from an actinomycete strain, and it also shows good antitumor activity. ${ }^{3}$ The structural

[^0]similarities between these compounds and the more complex naphthyridinomycin family of antitumor antibiotics (cf. 5) are obvious.
The relative stereochemistry of quinocarcin had been deduced from X-ray crystallographic analysis of quinocarcinol (2), an inactive homologue which lacks the hemiaminal functionality. At the outset of work, the absolute configuration of 1 had not been determined, but computational studies ${ }^{6}$ suggested that the enantiomer shown may be preferred for binding to duplex DNA via nucleophilic attack of the 2 -amino group of guanine onto an iminium species derived from the hemiaminal. This would also have been consistent with biogenetic ${ }^{7}$ and synthetic ${ }^{8}$ work on naphthyridinomycin (5) and cyanocycline A (6). Although total syntheses of racemic quinocarcin (1) and quinocarcinol (2) have been reported, ${ }^{9}$ recent efforts have focused on enantiospecific approaches to these DNA-reactive molecules. ${ }^{10}$ We now present the details of our studies, culminating in the asymmetric synthesis and complete structure elucidation of (-)-quinocarcin (1). ${ }^{11}$
Our approach to these substances is based upon a unified strategy wherein appropriately functionalized 3,8-diazabicyclo[3.2.1] octanes III and IV would be assembled in one step via stereocontrolled 1,3 -dipolar cycloaddition of azomethine ylides such as II and monosubstituted olefinic dipolarophiles. ${ }^{12}$ Topological and diastereofacial control can be accomplished either

[^1]
Scheme I

 electrocyclic ring-opening

quinocarcin

Scheme II

14

15

by incorporating a chiral auxiliary onto the dipolarophile to provide III as required for quinocarcin ${ }^{13}$ or by rendering the cycloaddition intramolecular to provideIV as required for naphthyridinomycin. ${ }^{14}$ The "exo-si" cycloadduct III would possess four of the six
(13) Garner, P.; Ho, W. B.; Grandhee, S. K.; Youngs, W. J.; Kennedy, V. O. J. Org. Chem. 1991, 56, 5893.
(14) Garner, P.; Sunitha, K.; Ho, W. B.; Youngs, W. J.; Kennedy, V. O.; Djebli, A. J. Org. Chem. 1989, 54, 2041.
stereogenic centers present in 1 and also provide a suitable template for introduction of the remaining functionality and chirality as well. Generation of the cyclic azomethine ylide II was to be accomplished by means of a photochemically initiated electrocyclic ring opening of a precursor aziridine $I^{15,16}$
(15) (a) Huisgen, R.; Māder, H. Angew. Chem., Int. Ed. Engl. 1969, 8, 604. (b) Oida, S.; Ohki, E. Chem. Pharm. Bull. 1968, I6, 764.

Scheme III

Results and Discussion

The first order of business involved enantioselective synthesis of the substituted phenylglycinol derivative 14 , which was to serve as a precursor to a suitably functionalized aziridine corresponding to I. The sequence began with the base-catalyzed condensation of 2-methoxy-6-methylbenzaldehyde (7) ${ }^{17}$ with methyl methylsulfinylmethyl sulfide to give a 91% yield of the α-methylthiovinylsulfoxide 8, which was then hydrolyzed with concentrated HCl to 2-methoxy-6-methylphenylacetic acid (9) in 72\% yield. ${ }^{18} \mathrm{By}$ following Evans' asymmetric azidation protocol, ${ }^{19}$ carboxylic acid 9 was converted to its mixed pivalic anhydride and treated with the lithiated oxazolidine $\mathbf{1 0}$ derived from ($1 S, 2 R$)-norephedrine to give the chiral carboximide 11 in 73% yield. The potassium enolate of 11 was then treated with trisyl azide at $-78^{\circ} \mathrm{C}$ and the intermediate sulfonyl triazene quenched with glacial acetic acid to give the α-azido carboximide 12 in 88% yield after chromatography. Sodium borohydride reduction of 12 afforded the azido alcohol 13 in 83% yield along with a 96% yield of recovered auxiliary 10. Palladium-catalyzed hydrogenation of 13 produced the required phenylglycinol 14 in 78% yield.

The absolute stereochemistry shown for the α-azido carboximide 12 is that expected for azide transfer to the least-hindered face of a chelated potassium enolate. Even though 12 appeared to be homogeneous by ${ }^{1} \mathrm{H}$ NMR, suggesting a very high diastereoselectivity for the asymmetric azidation, a Mosher analysis ${ }^{20}$ was carried out to confirm the enantiomeric purity of 14. First, the alcohol moiety was protected as its tert-butyldimethylsilyl ether and then the resulting amine 15 was condensed with (+)- α-methoxy- α-(trifluoromethyl)phenylacetic acid (MT-$\mathrm{PA}-\mathrm{OH})$ to give the Mosher amide 16 in 68% yield after chromatography. Care was taken not to effect fortuitous resolution of the Mosher amide diastereomers. Compound 16 was shown to be $>99 \%$ pure by comparison of its ${ }^{1} \mathrm{H}$ NMR

[^2]spectrum with that of a diastereomeric mixture deliberately prepared from racemic 14 and (+)-MTPA-OH.

Preparation of the substituted aziridine 23 followed our previously elaborated route (see ref 13). Reaction of phenylglycinol 14 with maleic anhydride gave the maleamic acid 17 in 80% yield. Of the methods which we explored for maleimide formation, the $\mathrm{Ac}_{2} \mathrm{O}$-mediated dehydration proved superior, producing the O -acetylated maleimide 18 in 44% isolated yield. Byproducts 19 and 20 were also isolated from this reaction in 19 and 10% yields; the former could be saponified back to 14 in 70% yield, while AcOH could be eliminated from the latter to give 18 in 65% yield. Acidic hydrolysis (maleimides are not stable to basic conditions) of the extraneous O-acetyl group afforded the imide alcohol 21 in 76% yield. Maleimide 21 underwent a very clean reaction with methyl azide to give an essentially quantitative yield of the triazoline 22. Photochemical extrusion of nitrogen was accomplished by irradiation with a high-pressure Hg lamp through Pyrex, producing the desired aziridine 23 in 90% yield. ${ }^{21}$

For the cycloaddition, irradiation of a dioxane solution of aziridine 23 at $2537 \AA \AA$ in a quartz vessel provided a steady-state concentration of azomethine ylide 24. A total of 1.2 equiv of Oppolzer's chiral acryloyl sultam 25^{22} was added in 0.2 equiv portions to this photolyzed mixture. A very clean 1,3-dipolar cycloaddition occurred giving the exo-si adduct 26 in 61% isolated yield (based on 14% recovered 23) after flash chromatography. The absence of any other detectable stereoisomers in the crude reaction mixture (${ }^{1} \mathrm{H}$ NMR) was indicative of the high level of stereocontrol generally associated with additions to $\mathbf{2 5} .{ }^{23}$ It was necessary to limit the concentration of dipolarophile $\mathbf{2 5}$ during this photolysis since it absorbed about three times as much light as the aziridine substrate 23. At this point, the absolute configuration of the 6 -exo-substituted 3,8 -diazabicyclo[3.2.1]octyl system of 26 relative to the arylglycinol stereocenter was based solely on analogy with our model studies. This assignment was eventually confirmed upon completion of our synthesis of (-)-1. Methoxymethylation of the free hydroxyl group of 26

[^3]
Scheme IV

23

24

exo-si attack
61% yiald

26

Scheme V

NBS
CHCl_{3}, hv

28

31
LiOH
91% yield

32 (+ sultam 33)
using the standard procedure ((MOM)Cl + Hünig's base) afforded the MOM ether $\mathbf{2 7}$ in $\mathbf{9 2 \%}$ yield after flash chromatography.
It was felt that formation of the B ring of quinocarcin might be accomplished by transforming the aromatic methyl group (corresponding to $\mathrm{C}-7$ in 1) into a nucleophilic species that would then react selectively with the pro-R imide carbonyl (vide infra). An attractive option was based on the work of Flitsch, who had shown that 2 -succinimidyl benzylphosphonium ylides underwent
smooth intramolecular "Wittig olefination" to give the mitosane ring system. ${ }^{24}$ First, chemoselective benzylic bromination was achieved by irradiating a dilute (0.01 M) solution of $\mathbf{2 7}+$ NBS (1.2 equiv) in dry CHCl_{3} at $2537 \AA$ through Pyrex to give the benzylic bromide 28 in 60% yield along with some recovered 27. This radical chain reaction might actually be proceeding through the intermediacy of bromotrichloromethane which is formed in
(24) Flitsch, W.; Langer, W. Liebigs, Ann. Chem. 1988, 391. Flitsch, W.; Russkamp, P.; Langer, W, Ibid. 1985, 1413.

Scheme VI

situ. The use of a quartz rather than Pyrex vessel resulted in a poor yield of 28 , an expected consequence of the demonstrated lability of $\mathbf{2 7}$ under these photochemical conditions. However, no reaction was observed when $3000-\AA$ lamps were used-a puzzling result since pyrex cuts off light below $2750 \AA$. Electrophilic aromatic bromination was the dominant reaction path when higher concentrations (0.10 m) of $\mathbf{2 7}$ were employed. The reaction of crude 28 with triphenylphosphine resulted in theformation of the crystalline phosphonium salt 29 in 56% yield (from 27).
Treatment of 29 with KO- t - Bu in DMF produced an orange solution of ylide 30 which, upon heating to $120^{\circ} \mathrm{C}$, cyclized to give a single regioisomer 31 in 79% yield. In spite of the extensive work by Flitsch on related Wittig olefinations, this appears to be the first reported dihydroisoquinoline synthesis using this methodology. Interestingly, model studies with simpler substrates seem to suggest that the electron-donating methoxy substituent is crucial for the success of this reaction. ${ }^{25}$ The regiochemical assignment of structure of 31 was readily confirmed by a series of NOE difference experiments on ester 34, obtained in 64% yield from 31 after saponification and esterification with diazomethane, indicating the proximity of $\mathrm{H}-7$ to $\mathrm{H}-6$ but not $\mathrm{H}-3$ (quinocarcin numbering). ${ }^{26}$ This result can be rationalized by a transition-state conformation that has the ylide approaching the pro- R imide carbonyl from the exo face to avoid placing the $\mathrm{CH}_{2} \mathrm{O}$ (MOM) group in the imide plane (see A vs B below). ${ }^{27}$ It is also possible that the exo-carbonyl substituent exerts a stereoelectronic effect on the pro- R carbonyl, rendering it more electrophilic (larger LUMO coefficient). ${ }^{28}$

Hydrogenation of 31 over Raney Nickel occurred at high pressures to afford nearly equal amounts of $\mathbf{3 5}$ and the overreduced byproduct 36 in 64% combined yield. Since these reactions were conducted in a sealed "bomb" (see the Experimental Section), it was not possible to conveniently follow the course of the reduction by TLC. Thus, the ratio of $\mathbf{3 5}$ to $\mathbf{3 6}$ varied from run to run with the activity of the Raney nickel, hydrogen pressure, and temperature. In any case, the combined yield of $\mathbf{3 5}+\mathbf{3 6}$ was always on the order of $60-65 \%$. Saponification of 35 produced the carboxylic acid 37 in quantitative yield along with $85-88 \%$ of the sultam auxiliary 33 , which could in principle be recycled. Reaction of 37 with etheral diazomethane produced the corresponding methyl ester 38 in 70% yield. NOE experiments on this compound confirmed the proximity of $\mathrm{H}-5$ and $\mathrm{H}-7$ and thus the stereochemical course of the hydrogenation. While the formation of 36 was not desirable in the context of our quinocarcin synthesis (although we do note that Fukuyama successfully oxidized a related alcohol to its carboxylic acid), the similarity between structure 36 and that of tetrazomine (4) is noteworthy. Alternatively, the previously described ester 34 underwent clean hydrogenation to give 38 in 67% yield without any overreduction.

The final sequence commenced with partial reduction of the lactam moiety in 37. This transformation was of some concern to us in light of Danishefsky's inability to effect partial reduction of the (racemic) primary alcohol corresponding to 37 (see ref 9 a). Hirata, on the other hand, did manage to effect the partial reduction of a quinocarcin model system that corresponded to 37 minus the aromatic methoxy and $\mathrm{CH}_{2} \mathrm{O}$ (MOM) substitutents using LiAlH_{4} (see ref 4a). Unfortunately, compound 37 remained
(25) Ho, W. B. The Asymmetric Synthesis of (-)-Quinocarcin. Ph.D. Dissertation, Case Western Reserve University, Cleveland, OH, 1992
(26) The following numbering schemes are used to describe postcycloaddition structures. Prior to B-ring formation, nomenclature is based on the parent 3,8-diazabicyclo[3.2.1]octane system i , whereas the 8,11 iminoazepine $[1,2-b$]isoquinoline system ii and 3,6 -imino- $1 H$-2-oxa-11cazanaphth $[1,2,3-c d]$ azulene skeleton iii are employed once the scarbon skeleton of quinocarcin is intact.

(27) For a similar argument governing a highly stereoselective intramolecular cycloaddition, see: ref 14.
(28) Kayser, M. M.; Wipff, G. Can. J. Chem. 1982, 60, 1192. Kayser, M. M.; Salvador, J.; Morand, P.; Krishnamurty, H. G. Ibid. 1982, 60, 1199.

Scheme VII

intact even after exposure to LiAlH_{4} at elevated temperatures, apparently the result of steric shielding about the lactam carbonyl. We then turned to the dissolving metal reduction conditions that Evans had used to effect a similar partial lactam reduction in his cyanocycline A synthesis. Exposure of 37 to an excess of $\mathrm{Li}-$ NH_{3} presumably resulted in formation of the desired hemiaminal, which was not isolated but treated directly with NaCN at neutral pH to give the stable aminonitrile derivative 39 in 60% overall yield. The same sequence was used to convert compound 36 to the aminonitrile 40 in 56% yield. Racemic versions of both 39 and 40 were intermediates in Fukuyama's synthesis of (\pm)quinocarcin.

Deprotection of 39 with (TMS) $\mathrm{Cl}+\mathrm{NaI}-\mathrm{MeCN}^{29}$ afforded DX-52-1 (3). The ${ }^{1} \mathrm{H}$ NMR spectrum of this material in 10% $\mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3}$ was identical to Fukuyama's, but the corresponding spectrum in $\mathrm{D}_{2} \mathrm{O}$ did not match that reported by Hirata. However, the spectrum of an authentic sample of DX-52-1 in $\mathrm{D}_{2} \mathrm{O}$ did match that of our synthetic material. These observations illustrate the sensitivity of the NMR spectra of ionizable amino acids to differences in pH and concentration. Theoptical rotation of our synthetic DX-52-1 was almost identical to that measured for the authentic sample: $[\alpha]_{D}=35$ vs $36^{\circ}(c 0.51, \mathrm{MeOH})$. Treatment of synthetic 3 with AgNO_{3} produced (-)-quinocarcin (1) in 94% yield. Since 1 is unstable to silica gel, ${ }^{30}$ its purification was problematic. It was eventually found that the silver salts could be cleanly removed from the reaction mixture by addition of a basic ion-exchange resin followed by simple filtration. Final purification of 1 was then achieved by reverse-phase HPLC on a C18 column. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data obtained for synthetic 1 matched that reported in the literature as well as those of an authentic sample. Furthermore, comparison of theoptical rotation of synthetic $1\left([\alpha]_{\mathrm{D}}-30^{\circ}\left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right)\right.$) with that of natural quinocarcin (lit. $[\alpha]_{\mathrm{D}}-32^{\circ}\left(c 0.50, \mathrm{H}_{2} \mathrm{O}\right)$ confirmed that the absolute configuration of our synthetic material is the same as that of the natural product.

Since the original structure of quinocarcin (actually ent-1) was based on crystallographic analysis of quinocarcinol (2), the stereochemistry at $\mathrm{C}-2 \mathrm{a}$ could not be assigned unambiguously. The reported relative configuration at $\mathrm{C}-2 \mathrm{a}$ was based on an observed vicinal coupling constant of 3.2 Hz between $\mathrm{H}-2 \mathrm{a}$ and

[^4]

Figure 1. Expanded region of the NOESY spectral contour plot of quinocarcin citrate.

H-3, but this information alone does not rule out alternative structures which might also have the required dihedral angles for this J value. If one considers that $\mathrm{N}-11 \mathrm{c}$ is also a chiral center, then four diastereomeric modifications are possible for the quinocarcin molecule. Molecular modeling of each of these quinocarcin diastereomers (as their zwitterions) led to four lowenergy conformers corresponding to the ($2 \mathrm{a} R, 11 \mathrm{CS}$), ($2 \mathrm{a} R, 11 \mathrm{c} R$), ($2 \mathrm{a} S, 1 \mathrm{c} S$), and ($2 \mathrm{a} S, 11 \mathrm{c} R$) configurations. Our modeling
results ${ }^{31}$ agreed qualitatively with those of Remers and coworkers (ref 6) in that the lowest energy structure corresponded to ($2 \mathrm{a} R, 11 \mathrm{cS}$)-configured quinocarcin, but with an energy difference of $\sim 3 \mathrm{kcal} / \mathrm{mol}$ between ($2 \mathrm{a} R, 11 \mathrm{cS}$) - 1 and ($2 \mathrm{a} R, 11 \mathrm{c} R$)-1.

Positive diagnostic evidence for the ($2 \mathrm{a} R$) configuration came from a NOESY experiment on quinocarcin citrate. The resulting 2D spectrum (Figure 1) showed an off-diagonal crosspeak connecting $\mathrm{H}-2 \mathrm{a}$ and $\mathrm{H}-11 \mathrm{~b}$, indicating their spacial proximity ($r \sim$ 2.6-3.0 \AA according to models). The distance between $\mathrm{H}-2 \mathrm{a}$ and H 11 b increases to $\sim 3.7 \AA$ in structures having the (2aS) configuration, where they are 1,3 -trans to each other. A strong NOE between H-2a and endo H-4 ($r \sim 2.1-2.2 \AA$ from models) might have been expected for this compound but was not observed. The NOESY spectrum also showed a weak interaction between $\mathrm{H}-6 \mathrm{a}$ and $\mathrm{H}-11 \mathrm{~b}$, but no crosspeak was observed between $\mathrm{H}-2 \mathrm{a}$ and $\mathrm{H}-6 \mathrm{a}$. The experimental data are consistent with either the ($2 \mathrm{a} R, 11 \mathrm{c} S$) or ($2 \mathrm{a} R, 11 \mathrm{c} R$) configuration for quinocarcin (1), or some average thereof. Unfortunately, our NOESY experiment did not permit unambiguous assignment of the configuration at $\mathrm{N}-11 \mathrm{c}$. These structural aspects of quinocarcin are of biomechanistic interest since iminium formation (required for DNA alkylation) requires the $\mathrm{N}-11 \mathrm{c}$ lone pair to be antit to $\mathrm{O}-2$ whereas redox self-disproportionation (leading to oxidative DNA cleavage) is stereoelectronically favored when the N -11c lone pair is anti to $\mathrm{H}-2 \mathrm{a}$ (see ref 3).

Experimental Section

Silica gel TLC plates were visualized with UV illumination followed by charring with either 5% anisaldehyde in (95:5:1) EtOH-AcOH- $\mathrm{H}_{2}-$ SO_{4} (char A), 0.3% ninhydrin in ($97: 3$) n - $\mathrm{BuOH}-\mathrm{AcOH}$ (char B), or 2% vanillin in (98:2) $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{SO}_{4}$ (char C). Melting points are uncorrected. The ${ }^{1} \mathrm{H}$ NMR signal assignments were based on selective homonuclear decoupling experiments, while the ${ }^{13} \mathrm{C}$ assignments were based on APT (attached proton test) experiments and proton-coupling data. Highresolution mass spectral (HRMS) data are reported in units of m / e for M^{+}or the highest mass fragment derived from M^{+}. All reactions were performed under an inert (N_{2} or Ar), moisture-free atmosphere except when working in aqueous media. Solvents were purified beyond reagent grade as follows: 1,4-dioxane, THF, and toluene were distilled from sodium + benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMF were distilled from CaH_{2} and stored over $4-\AA$ molecular sieves; CHCl_{3} was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Photolyses were performed either with a Canrad-Hanovia 450-W medium-pressure Hg lamp or with low-pressure Hg lamps (2537 A) in a Rayonet Photochemical Reactor RPR-100.

1-(Methylsulfinyl)-1-(methylthio)-2-(2-methoxy-6-methylpheny)ethylene (8). To a solution of $7(22.4 \mathrm{~g}, 0.149 \mathrm{~mol})$ in THF (50 mL) was added methyl methylsulfinylmethyl sulfide ($20.6 \mathrm{~mL}, 0.197 \mathrm{~mol}$) followed by Triton B ($15 \mathrm{~mL}, 40 \% \mathrm{w} / \mathrm{w}, 33 \mathrm{mmol}$). The mixture was refluxed for 24 h when the TLC showed the reaction to be complete. After the reaction mixture was cooled to room temperature, it was acidified with 1 NHCl to $\mathrm{pH}=1$ and the THF evaporated. The mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated to give 52.2 g of crude product. Flash chromatography over silica gel, eluting with ($6: 1$) hexanes-EtOAc, gave $8(34.6 \mathrm{~g}, 91 \%, E / Z=5: 1)$ as a yellow liquid. For a nalytical purposes, pure samples of $E-8$ and $Z-8$ were obtained by PTLC.
For $E-8: R_{f} 0.47$ in (1:1) EtOAc-hexanes; IR $\left(\mathrm{CHCl}_{3}\right) 3010,1600$, $1580,1470,1440,1265,1085,1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.83(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.80$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{SOCH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR
(31) Molecular modeling was performed on the zwitterionic structures using the Biograf 3.1 software package. Conformational sampling was done by subjecting each diastereomer to 20 ps of quenched dynamics at 1000 K with 300 steps of minimization every 0.1 ps . For each diastereomer, the lowest energy structure was extracted, atomic charges were calculated using the program's "Q equilibrate" option, and its energy was minimized to an rms force of 0.100 or less using the Dreiding II force field. Structure, $E_{1}\left(\epsilon_{0}=\right.$ 1), $E_{\mathrm{t}}\left(\epsilon_{0}=4\right):(2 \mathrm{a} R, 11 \mathrm{cS})-1,95.1,85.5 \mathrm{kcal} / \mathrm{mol} ;(2 \mathrm{a} R, 11 \mathrm{c} R)-1,98.6,88.1$ $\mathrm{kcal} / \mathrm{mol} ;(2 \mathrm{aS}, 1 \mathrm{c} R)-1,100.4,85.5 \mathrm{kcal} / \mathrm{mol} ;(2 \mathrm{aS}, 11 \mathrm{cS})-1,99.1,85.9 \mathrm{kcal} /$ mol.
$\left(\mathrm{CDCl}_{3}\right) \delta 156.7(\mathrm{Ar}), 144.7$ (Ar or $\left.C(\mathrm{SMe}) \mathrm{SOMe}\right), 137.4$ (Ar or $C(\mathrm{SMe})-$ SOMe), 133.3 (Ar or CHAr), 129.0 (Ar or CHAr), 122.9 (Ar), 122.3 (Ar), 107.9 (Ar), 55.4 (OMe), 40.8 (SOMe), 19.9 (ArCH_{3} or SMe), $17.4\left(\mathrm{ArCH}_{3}\right.$ or SMe$)$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}_{2}\left(\mathrm{M}^{+}-\mathrm{O}\right) 240.0643$, found 240.0646 .

For Z-8: $R_{f} 0.25$ in (1:1) EtOAc-hexanes; $\mathrm{mp} 122-124^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $3010,1600,1580,1470,1440,1265,1085,1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}) \delta 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{d}, J=7.91 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.66$ $(\mathrm{s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.3$ (Ar), 146.7 (Ar or C(SMe)SOMe), 136.8 (Ar or C(SMe)SOMe), 129.7 (Ar or CHAr), 128.6 (Ar or CHAr), 122.1 (Ar), 121.8 (Ar), 107.4 (Ar), 54.6 (OMe), 38.2 (SOMe), $19.5\left(\mathrm{ArCH}_{3}\right.$ or SMe$), 17.6$ (ArCH_{3} or SMe); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}_{2}\left(\mathrm{M}^{+}-\mathrm{O}\right) 240.0643$, found 240.0622 .
(2-Methoxy-6-methylphenyl)acetic Acid (9). $\mathrm{HCl}(230 \mathrm{~mL}$) was added dropwise to a solution of $8(34.4 \mathrm{~g}, 0.140 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(320 \mathrm{~mL})$. The resulting reddish mixture was refluxed for 72 h when the TLC showed the reaction to be complete. After cooling, the mixture was basified to $\mathrm{pH}=11$ with 10 N NaOH and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The aqueous layer was acidified to $\mathrm{pH}=1$ with N HCl whereupon a pale yellow oil ($\approx 30 \mathrm{~g}$) separated out. This oil was dissolved in EtOAc and a crop of crystalline $9(9.7 \mathrm{~g})$ was collected. Incompletely hydrolyzed material ($\approx 11 \mathrm{~g}$) was obtained from the organic wash, and this was refluxed in $10 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{~mL})$ overnight. After cooling, the reaction mixture was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, acidified to $\mathrm{pH}=1$, and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ to afford a yellow solid $(2.2 \mathrm{~g})$. This solid was combined with mother liquor of the first crop and crystallized from EtOAc to give a second crop of $9(7.8 \mathrm{~g}$, total $=17.5 \mathrm{~g}$ or 72% yield): $R_{\mathrm{f}} 0.52$ in (1:1) EtOAc-hexanes; $\mathrm{mp} 154-156^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 3510$, $3010,2950,1715,1590,1480,1270,1090 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200$ $\mathrm{MHz}) \delta 7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $6.74(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$, $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.5\left(\mathrm{CO}_{2} \mathrm{H}\right), 156.9,137.7$, 127.7, 122.0, 120.4, 107.5 (Ar), $55.0\left(\mathrm{PhOCH}_{3}\right), 31.1\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 19.1$ (PhCH_{3}); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$180.0786, found 180.0794.
(4S,5R)-3-(2-(2-Methoxy-6-methylphenyl)acetyl)-4-methyl-5-phenyl-1,3-oxazolidin-2-one (11). To a solution containing 9 ($30.0 \mathrm{~g}, 0.167$ mol) dissolved in THF (1.2 L) was added fresh distilled pivaloyl chloride $(21.5 \mathrm{~mL}, 0.174 \mathrm{~mol})$ at $-78^{\circ} \mathrm{C}$ followed by $\mathrm{Et}_{3} \mathrm{~N}(24.4 \mathrm{~mL}, 0.175 \mathrm{~mol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , at $0^{\circ} \mathrm{C}$ for 45 min , then recooled to $-78^{\circ} \mathrm{C}$. In a separate flask, $2.5 \mathrm{M} \mathrm{n}-\mathrm{BuLi}(76.4 \mathrm{~mL}, 0.191$ $\mathrm{mol})$ was added to a solution of $10(32.5 \mathrm{~g}, 0.183 \mathrm{~mol})$ in THF (600 mL) at $-78^{\circ} \mathrm{C}$ and stirred for 15 min , then transferred to the flask containing pivalic anhydride via cannula. The mixture was stirred for 15 min at -78 ${ }^{\circ} \mathrm{C}$ and 9 h at room temperature when TLC analysis showed the reaction to be complete. The reaction was quenched with $2 \mathrm{M} \mathrm{KHSO}_{4}(350 \mathrm{~mL})$ and, after evaporation of most of the THF, was extracted with EtOAc $(3 \times 500 \mathrm{~mL})$. The combined organic layers were washed with brine (250 mL), dried over MgSO_{4}, filtered, and concentrated to give the crude product. Crystallization from (3:1) EtOAc-hexanes afforded the product 11 ($41.6 \mathrm{~g}, 73 \%$ yield) as a white solid: $R_{\mathrm{f}} 0.43$ in ($4: 1$) hexanes-EtOAc; $\mathrm{mp} 149-151^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-14.1^{\circ}\left(c 1.95, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3010,1785$, $1715,1590,1480,1360,1270,1245,1200 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200$ $\mathrm{MHz}) \delta 7.49-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.83(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 5.73(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 4.80(\mathrm{dq}, J=7.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCH}), 4.39(\mathrm{~d}$, $\left.J=18.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{PhCH}_{2} \mathrm{~N}\right), 4.27\left(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{PhCH}_{2} \mathrm{~N}\right)$, 3.79 (s, $3 \mathrm{H}, \mathrm{PhOCH}_{3}$), 2.26 (s, $3 \mathrm{H}, \mathrm{PhCH}_{3}$), $0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.8\left(\mathrm{CH}_{2} \mathrm{CON}\right), 157.6(\mathrm{Ph})$, $153.6\left(\mathrm{NCO}_{2}\right), 138.2,133.4,128.7,127.8,125.6,122.6,121.5,108.07$ ($\mathrm{Ar} / \mathrm{Ph}$), $79.0(\mathrm{PhCHN}), 55.6,54.9\left(\mathrm{NCHCH}_{3}\right), 33.5\left(\mathrm{PhCH}_{2} \mathrm{CON}\right)$, $19.8\left(\mathrm{CH}_{3} \mathrm{Ph}\right), 14.5\left(\mathrm{CH}_{3} \mathrm{CHN}\right)$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}\left(\mathrm{M}^{+}\right)$ 339.1471, found 339.1485 .
(4S,5R,2'R)-3-(2-Azido-2-(2-methoxy-6-methylphenyl)acetyl)-4-methyl-5-phenyl-1,3-oxazolidin-2-one (12). A solution of $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(117 \mathrm{~mL}$ of a 0.5 M in toluene, 0.0587 mol$)$ was added to a solution of $5(20.0 \mathrm{~g}$, 0.059 mol) in dry THF (800 mL) at $-78^{\circ} \mathrm{C}$ via cannula over 5 min , and stirring continued for 15 min . To this cold enolate solution was added a $-78^{\circ} \mathrm{C}$ solution of trisyl azide ($22.7 \mathrm{~g}, 0.073 \mathrm{~mol}$) in THF (200 mL) over 3 min via cannula. After 2 min at $-78^{\circ} \mathrm{C}$, glacial acetic acid (10.1 $\mathrm{mL}, 0.177 \mathrm{~mol}$) was injected in one portion followed by immediate heating to room temperature. After 18 h of stirring, the bulk of the THF was removed and the residue dissolved in EtOAc (750 mL), washed with saturated $\mathrm{NaHCO}_{3}(250 \mathrm{~mL})$ followed by brine $(250 \mathrm{~mL})$, and dried over MgSO_{4}. After filtration and concentration, the resulting yellow gum ($\approx 25 \mathrm{~g}$) was purified by flash chromatography over SiO_{2}, eluting
with (20:3) hexanes-EtOAc to afford the desired product 12 (19.7 g , 88% yield) as a white solid: $R_{\mathrm{f}} 0.43$ in (4:1) hexanes-EtOAc; mp $104-$ $106^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-280.7^{\circ}\left(c 0.71, \mathrm{CHCl}_{3}\right.$); IR $\left(\mathrm{CHCl}_{3}\right) 3020,2405,2120$, $1790,1730,1540,1470,1360,1200, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) $\delta 7.44-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $5.71\left(\mathrm{~s}, \mathrm{H}, \mathrm{CHN}_{3}\right), 5.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHO})$, 4.66 (dq, $J=7.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCHN}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhOCH}_{3}\right.$), 2.49 (s, $\left.3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 1.02\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 169.6\left(\mathrm{~N}_{3} \mathrm{CHCO}\right), 156.6(\mathrm{Ph}), 152.2\left(\mathrm{NCO}_{2}\right), 140.6,132.7,129.9$, 128.7, 128.6, 125.5, 124.1, 121.8, 109.7 ($\mathrm{Ar} / \mathrm{Ph}$), 79.7 (PhCHO), 61.0 $\left(\mathrm{CHN}_{3}\right), 56.5\left(\mathrm{PhOCH}_{3}\right), 56.1(\mathrm{NCHMe}), 19.6\left(\mathrm{PhCH}_{3}\right), 14.3$ (NCHCH_{3}); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{N}_{2}\right) 352.1423$, found 352.1427.
(2R)-2-Azido-2-(2-methoxy-6-methylphenyl)ethanol (13). To a solution of $12(17.3 \mathrm{~g}, 0.0455 \mathrm{~mol})$ in ($2: 1$) THF- $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(7.0 \mathrm{~g}, 0.185 \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred at 5 ${ }^{\circ} \mathrm{C}$ for 42 h , TLC analysis showed the reaction to be complete. The reaction was quenched with $1.6 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution (63 mL), and the bulk of the THF was removed. The resulting gum was partitioned between $\operatorname{EtOAc}(4 \times 300 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered, and concentrated to give the crude product which was purified by flash chromatography over silica gel, eluting with (4:1) hexanes-EtOAc to afford 13 as a yellow gum ($7.9 \mathrm{~g}, 83 \%$ yield) along with $7.7 \mathrm{~g}(96 \%)$ of recovered auxiliary 10 . For $13: R_{\mathrm{f}} 0.62$ in (4:1) hexanes-EtOAc; $[\alpha]_{\mathrm{D}}-154.5^{\circ}\left(c 1.75, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3600,3010$, $2850,2020,1590,1475,1260,1190,1135 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ one drop of $\left.\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right) \delta 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}$, CHN_{3}), 4.13 (dd, $\left.J=11.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}$, PhOCH_{3}), 3.75 (dd, $J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}$), $2.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{PhCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.7,139.3,130.0,124.5,122.5,109.7$ (Ar), $64.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.8\left(\mathrm{CHN}_{3}\right), 56.3\left(\mathrm{PhOCH}_{3}\right), 21.1\left(\mathrm{PhCH}_{3}\right)$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (M^{+}) 207.1008, found 207.1005.
(2R)-2-Amino-2-(2-methoxy-6-methylphenyl)ethyl Alcohol (14). To a solution of azido alcohol $13(164 \mathrm{mg}, 0.790 \mathrm{mmol})$ in absolute EtOH (4 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(13 \mathrm{mg})$. The mixture stirred under H_{2} at room temperature for 24 h when TLC analysis showed the reaction to be complete. The catalyst was filtered off through a Celite pad and the solvent removed to give the crude product which was purified by flash chromatography over silica gel, eluting with $(100: 20: 1) \mathrm{CHCl}_{3}-\mathrm{MeOH}-$ $\mathrm{NH}_{4} \mathrm{OH}$, to afford the amino alcohol 14 ($113 \mathrm{mg}, 78 \%$ yield) as a white solid: $R_{\mathrm{f}} 0.08-0.28$ in (100:20:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH} ; \mathrm{mp}$ 132-134 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-40.5^{\circ}\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3620,3420,3010,2980$, $1600,1585,1475,1280,1265,1250,1080,1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $200 \mathrm{MHz}) \delta 7.12(\mathrm{t}, J=7.9,1 \mathrm{H}, \mathrm{ArH}), 6.80-6.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.15$ (dd, $J=9.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhOCH}_{3}\right), 3.78(\mathrm{t}, J=9.9,1$ H), 3.55 (dd, $J=10.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 2.41-2.18$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.4,137.0,128.5,127.7,123.3$, $109.2(\mathrm{Ar}), 64.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.1\left(\mathrm{PhOCH}_{3}\right), 53.5\left(\mathrm{PhCHNH}_{2}\right), 20.3$ $\left(\mathrm{PhCH}_{3}\right)$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}\right) 150.0919$, found 150.0919.

Mosher Amide Analysis of Enantiomeric Purity. To a solution of 14 ($99 \mathrm{mg}, 0.54 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(116$ $\mathrm{mg}, 10.8 \mathrm{mmol}$) followed by $\mathrm{Et}_{3} \mathrm{~N}(220 \mathrm{~mL}, 2.92 \mathrm{mmol})$. This mixture was stirred at room temperature for 23 h when TLC analysis showed the reaction to be complete. The solvent was removed and the residue purified by flash chromatography over silica gel, eluting with (10:1) $\mathrm{CHCl}_{3}-$ MeOH , to afford $15\left(159 \mathrm{mg}, 100 \%\right.$ yield) as a pale yellow oil: $R_{\mathrm{f}} 0.55$ in ($100: 20: 1$) $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH} ;[\alpha]_{\mathrm{D}}-8.26^{\circ}\left(c 0.71, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3690,3015,2400,1740,1525,1480,1425,1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.71 (d, $J=7.46 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.26$ (dd, $J=8.2,6.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHNH} 2), 3.94-3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhOCH}_{3}\right)$, 3.46 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 0.82\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $-0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right),-0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 159$, 138.8, 128.6, 126.7, 124.1, 109.7 (Ar), $66.2\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 55.8\left(\mathrm{PhOCH}_{3}\right)$, $54.2\left(\mathrm{CHNH}_{2}\right), 26.5\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 18.9\left(\mathrm{Me}_{3} \mathrm{CSi}\right),-4.8$ $\left(\mathrm{CH}_{3} \mathrm{Si}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{NH}_{3}\right) 278.1702$, found 278.1822. To a vial containing 1-hydroxybenzotriazole monohydrate ($16 \mathrm{mg}, 0.11 \mathrm{mmol}$) and 1-(3-(dimethylamino)propyl)-3-ethylcarbodiimide hydrochloride ($18 \mathrm{mg}, 0.093 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $(+)-\alpha$-methoxy- α-(trifluoromethyl)phenylacetic acid ($14.3 \mathrm{mg}, 0.061$ $\mathrm{mmol})$ and $\mathbf{1 5}(15 \mathrm{mg}, 0.051 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 13 h when TLC analysis showed the reaction to be complete. After concentration, the crude product was purified by PTLC on silica gel to give 16 ($18 \mathrm{mg}, 68 \%$ yield) as a
colorless oil. A wide band was cut to prevent accidental separation of the diastereomeric Mosher amide ($R_{f} 0.69$). For compound 16: $R_{f} 0.73$ in (5:1) hexanes-EtOAc; $[\alpha]_{\mathrm{D}}-29.9^{\circ}\left(\mathrm{c}, 1.20, \mathrm{CHCl}_{3}\right) ;$ IR (CHCl$) 3010$, $2970,2940,1700,1520,1475,1275,1260,1190,1170,1130,1110,910$, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.66(\mathrm{bd}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.79(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.54(\mathrm{dt}, J=9.3$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} H \mathrm{NH}$), 3.94 (dd, $J=10.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OSi}$), 3.79 (dd, $J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OSi}$), 3.53 (s, $6 \mathrm{H}, \mathrm{PhOCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{OCCF}_{3}$), $2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 0.81\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right),-0.03(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right),-0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right)$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{SiF}_{3}$ $\left(\mathrm{MH}^{+}\right) 512.2443$, found 512.2511 .
[$R(Z)]-4-[[2-H y d r o x y ~ 1-(2-m e t h o x y-6-m e t h y 1 p h e n y 1) e t h y l] a m i n o]-4-~$ oxo-2-butenoic Acid (17). A solution of maleic anhydride (1.5 equiv) in dry $\mathrm{Et}_{2} \mathrm{O}$ (ca. 0.5 M) was added dropwise to an ice-cold solution of amine 14 (1 equiv) in $\mathrm{Et}_{2} \mathrm{O}$ (ca. 0.002 M). After the addition was complete (1.5 h), the resulting suspension was stirred at ambient temperature for 20 h. The white solid was collected and washed twice with $\mathrm{Et}_{2} \mathrm{O}$ to give the crude product which was partitioned between saturated NaHCO_{3} solution and $\mathrm{Et}_{2} \mathrm{O}$. The aqueous phase was acidified to $\mathrm{pH} 1-2$ with 5 N HCl in an ice bath, then extracted with (1:1) EtOAc-THF. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the maleamic acid 17 as a white solid in 80% yield: $\mathrm{mp} 160.5-162.0^{\circ} \mathrm{C}$ (from MeOH); $R_{\mathrm{f}} 0.8$ in (4:1:1) BuOH- $\mathrm{H}_{2} \mathrm{O}-\mathrm{AcOH}$ (char C); $[\alpha]_{\mathrm{D}}$ -150.6° (c $\left.1.6, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO- d_{6}) $\delta 9.34$ (br d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.11(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.80(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.60(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CHCO} 2 \mathrm{H}), 6.25(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCONH}), 5.23(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArCH}), 4.92\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.84\left(\mathrm{~m}, 1 \mathrm{H}, 1 /{ }_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.76 (s, $3 \mathrm{H}, \mathrm{OMe}$), $3.59\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}\right), 2.38(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 165.5,165.0$ (CO), 158.0, 137.5 (Ar), 133.6, $131.45(\mathrm{CH}=\mathrm{CH}), 128.2,125.0,122.8,109.7(\mathrm{Ar}), 61.5\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{OH}), 55.5(\mathrm{OMe}), 51.8(\mathrm{ArCH}), 19.8$ (ArMe); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14}{ }^{-}$ $\mathrm{NO}_{4}\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}\right) 248.0923$, found 248.0922.
(R)-1-[2-(Acetyloxy)-1-(2-methoxy-6-methylphenyl)ethyl]-1 H-pyrrole-2,5-dione (18). A mixture of maleamic acid 17 (1 equiv) and anhydrous $\mathrm{NaOAc}\left(0.8\right.$ equiv) was heated to $120^{\circ} \mathrm{C}$ in an oil bath. Acetic anhydride ($8 \mathrm{~mL} / \mathrm{mmol}$ of 17) was added, and the resulting mixture was stirred at this temperature for 20 h , at which time the solvent was removed in vacuo. The residue was partitioned between EtOAc and 0.5 N HCl , and the aqueous layer was extracted two more times with EtOAc. The combined organic layers were washed successively with saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a crude gummy product. This material was purified by flash chromatography over silica gel, eluting with EtOAc-hexanes, to furnish the desired maleimide 18 in 44% isolated yield along with small amounts of the acetamide $19(19 \%)$ and conjugate addition product $20(10 \%)$.

For 18: $R_{\mathrm{f}} 0.36$ in (2:1) hexanes-EtOAc (char A); $[\alpha]_{\mathrm{D}} 151.2^{\circ}(c 1.7$, CHCl_{3}); IR (CHCl_{3}) $1740,1705,1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CHCl}_{3}\right) \delta 7.13(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $6.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.57(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 5.48(\mathrm{dd}, J=$ $9.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 5.25\left(\mathrm{dd}, J=11.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OAc}\right)$, 4.55 (dd, $J=11.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OAc}$), 3.72 (s, $3 \mathrm{H}, \mathrm{OMe}$), 2.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArMe}), 2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7$, $170.5(\mathrm{CO}), 158.2,138.9$ (Ar), $133.9(\mathrm{CH}=\mathrm{CH}), 129.1,123.2,122.3$, 109.1 (Ar), $62.4\left(\mathrm{CH}_{2} \mathrm{OAc}\right), 55.2(\mathrm{OMe}), 51.3$ (ArCH), 20.9, 20.1 (ArMe, OAc); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 303.1107$, found 303.1107.

For 19: $R_{f} 0.33$ in EtOAc (char A); $[\alpha]_{\mathrm{D}}-117.1^{\circ}\left(c 1.24, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3440,1730,1660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.78(\mathrm{br} \mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.72(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArCH}$), 4.37 (dd, $J=10.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OAc}$), 4.21 (dd, $\left.J=10.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OAc}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.44(\mathrm{~s}, 3 \mathrm{H}$, ArMe), 1.99 (s, $3 \mathrm{H}, \mathrm{Me}$), 1.94 (s, $3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,169.4(\mathrm{CO}), 158.0,138.3,128.6,124.1,123.6,109.0$ (Ar), 64.8 ($\mathrm{CH}_{2} \mathrm{OAc}$), 55.4 (OMe), 47.2 (ArCHN), 23.5, 20.8, 20.2 (3 Me).

For 20: 2 diastereomers; $R_{\mathrm{f}} 0.17$ in (2:1) hexanes-EtOAc (char A); ${ }^{1} \mathrm{H}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.73(\mathrm{brt}, 2 \mathrm{H}, \mathrm{ArH})$, 5.50 (dd, $J=9.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}$), $5.41-5.24$ (m, $2 \mathrm{H}, \mathrm{CHOAc}$, $1 / 2 \mathrm{CH}_{2} \mathrm{OAc}$), 4.51 (m, $\left.1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OAc}\right), 3.74$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.05 (dd, $J=18.3,8.8 \mathrm{~Hz}, 0.5 \mathrm{H}, 1 / 4 \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $3.04(\mathrm{dd}, J=18.3,8.8 \mathrm{~Hz}, 0.5$ $\left.\mathrm{H}, 1 / 4 \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.59\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.43(\mathrm{~s}, 1.5 \mathrm{H}$, $\left.1 / 2 \mathrm{ArCH}_{3}\right), 2.42\left(\mathrm{~s}, 1.5 \mathrm{H}, 1 / 2 \mathrm{ArCH}_{3}\right), 2.13(\mathrm{~s}, 1.5 \mathrm{H}, 1 / 2 \mathrm{OAc}), 2.12(\mathrm{~s}$, $1.5 \mathrm{H}, 1 / 2 \mathrm{OAc}), 2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.9,172.7,170.7,169.9$ (CO), 158.2, 139.3, 123.3, 121.5, 109.1 (Ar), 67.3, 67.0 (CHOAc), 62.3, $62.1\left(\mathrm{CH}_{2} \mathrm{OAc}\right), 55.2(\mathrm{OMe}), 52.7(\mathrm{ArCH})$,
35.6, $35.5\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 20.9,20.6,20.1$ (2OAc, ArMe); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}\left(\mathrm{M}^{+}-\mathrm{HOAc}\right) 303.1107$, found 303.1106 .
$20 \rightarrow$ 18: A solution of $20(4.28 \mathrm{~g}, 0.0118 \mathrm{mmol})$ and triethylamine $(11.4 \mathrm{~g}, 0.113 \mathrm{~mol})$ in dry toluene $(80 \mathrm{~mL})$ was heated to $120^{\circ} \mathrm{C}$ for 2 days. The volatiles were removed, and the residue was purified by flash chromatography over silica gel, eluting with (2:1) hexanes-EtOAc, to afford 2.30 g (65% yield) of the imide 18.
$19 \rightarrow 14:$ A solution of $19(97.0 \mathrm{mg}, 0.435 \mathrm{mmol})$ and (1:1) 3 N $\mathrm{NaOH}-\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred at $85^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give 55 mg (70% yield) of the amino alcohol 14.
(R)-1-[2-Hydroxy-1-(2-methoxy-6-methylphenyl)ethyl]-1 \boldsymbol{H}-pyrrole-2,5-dione (21). A mixture of $18(1.26 \mathrm{~g}, 4.15 \mathrm{mmol})$ in ($2: 1) 5 \mathrm{~N} \mathrm{HCl}$ THF (60 mL) was stirred at ambient temperature for 36 h when TLC analysis showed the reaction to be complete. The mixture was neutralized to pH 7 by the careful addition of 5 N NaOH at $0^{\circ} \mathrm{C}$ and then extracted with $\operatorname{EtOAc}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to a crude product which was purified by flash chromatography over silica gel, eluting with (3:2) EtOAc-hexanes, to afford 817 mg (76% yield) of 21 as a pale yellow solid: $R_{\mathrm{f}} 0.29$ in ($1: 1$) EtOAc-hexanes (char A); mp 100.5-101.5 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexanes); $[\alpha]_{\mathrm{D}}$ $237.4^{\circ}\left(c 1.2, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3620-3340,1705,1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 6.76(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.59(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}$), 5.33 (dd, $J=9.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 4.64$ (ddd, $J=12.6$, $9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}$), 3.79 (ddd, $J=12.6,8.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}$, ${ }^{1} / 2 \mathrm{CH}_{2} \mathrm{OH}$), 3.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.05 (dd, $J=8.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 2.45 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7(\mathrm{CO}), 158.2$, $138.9(\mathrm{Ar}), 134.0(\mathrm{CH}=\mathrm{CH}), 128.8,123.3,122.7,109.2(\mathrm{Ar}), 60.7\left(\mathrm{CH}_{2}-\right.$ OH), 55.6, 55.3 ($\mathrm{ArCH}, \mathrm{OMe}$), 20.0 (ArMe); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15}-$ $\mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 261.1001$, found 261.1000.

5-[2-Hydroxy-1-(2-methoxy-6-methylphenyl)ethyl]-3a,6a-dihydro-1methylpyrrolo $[3,4-d]$-1,2,3-triazole-4,6(1H,5H)-dione (22). To a flask containing maleimide 21 was added a 14% solution of methyl azide in toluene ($2.7 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{2 1}$). The resulting clear solution was stirred at room temperature for 24 h when TLC analysis showed the reaction to be complete. Excess methyl azide and solvent were removed on a rotary evaporator, giving the crude product which was purified by flash chromatography over silica gel, eluting with (1:1) hexanes-EtOAc, to provide triazolines 22 in 99% yield: $R_{\mathrm{f}} 0.13$ in (1:1) EtOAc-hexanes (char A) ; IR (CHCl_{3}) $3600-3450,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $6.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.40(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}=\mathrm{NN}$), 5.25 (dd, $J=10.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}$), 4.63 (ddd, $J=12.6,10.2,6.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 1 /{ }_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.09(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHNN}=\mathrm{N}), 3.69(\mathrm{~m}$, $1 \mathrm{H}, 1 /{ }_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.61 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.32 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.09 (d, J $=7.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0(\mathrm{C}=\mathrm{O}), 157.5,138.4,129.0,123.2$, $121.1,108.9(\mathrm{Ar}), 81.3(\mathrm{CHN}=\mathrm{NN}), 61.1\left(\mathrm{CH}_{2} \mathrm{OAc}\right), 58.8,57.7$ $(\mathrm{CHNN}=\mathrm{N}, \mathrm{OMe}), 55.2(\mathrm{ArCH}), 35.5\left(\mathrm{NCH}_{3}\right), 19.8(\mathrm{ArMe}) ;$ HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 318.1328$, found 318.1332 .
(R)-3-[2-Hydroxy-1-(2-methoxy-6-methylphenyl)ethy1]-6-methyl-3,6-diazabicyclo[3.1.0]hexane-2,4-dione (23). A 0.2 M solution of triazoline 22 in spectrophotometric grade 1,4-dioxane in a pyrex immersion flask was purged with N_{2} for 10 min , then irradiated using a high-pressure Hg lamp for 5 h . TLC analysis indicated the clean conversion of triazoline to aziridine. The solvent was removed on a rotary evaporator, and the resulting oil was purified by flash chromatography over silica gel, eluting with ($10: 1$) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$, to furnish the desired aziridine 23 in 90% yield: $R_{\mathrm{f}} 0.44$ in ($10: 1$) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (char A); $[\alpha]_{\mathrm{D}} 139.2^{\circ}$ (c 1.86 , CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 3610-3400(\mathrm{br}), 1705,1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) \delta 7.10(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.71$ (br t, $2 \mathrm{H}, \mathrm{Ar}$), 5.19 (dd, $J=9.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 4.52$ (dd, $J=12.3,9.5 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.67 (m, hidden under $\mathrm{OMe}, 1 \mathrm{H}$, ${ }^{1} / 2 \mathrm{CH}_{2} \mathrm{OH}$), 2.72 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C} H \mathrm{NMeCH}$), 2.38 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{ArMe}, \mathrm{NMe}$); ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,172.5(\mathrm{C}=\mathrm{O}), 157.9,138.4,128.7$, 123.1, 122.1, 109.2 (Ar), 60.7 ($\mathrm{CH}_{2} \mathrm{OAc}$), 56.0, 55.2 (ArCH, OMe), 45.1 (NMe), 41.6, 41.4 (CHNCH), 19.8 (ArMe); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 290.1267$, found 290.1274.
[3aR-[1[1S $\left.\left.\left.{ }^{*}, 3\left(R^{*}\right), 5 R^{*}, 6 R^{*}\right], 3 \mathrm{a} \alpha, 6 \alpha, 7 \mathrm{a} \beta\right]\right]-1-[[3-[2-H y d r o x y-1-(2-$ methoxy-6-methylphenyl)ethyl]-8-methyl-2,4-diox0-3,8-diazabicyclo-[3.2.1]oct-6-yl]carbonyllhexahydro-8,8-dimethyl-2,2-dioxo-3H-3a,6-meth-ano-2,1-benzisothiazole (26). To a quartz tube (diameter 2.5 cm) containing aziridine $\mathbf{2 3}$ ($2.15 \mathrm{~g}, 7.34 \mathrm{mmol}$) in 1,4 -dioxane ($74 \mathrm{~mL}, 0.1$
M) was added 0.2 equiv of solid acrylimide 25 . The resulting solution was purged with N_{2} for 3 min and photolyzed at $2537 \AA$ with efficient stirring for 1 h , then checked by TLC. This procedure was repeated until a total of 1.2 equiv of $\mathbf{2 5}$ had been introduced. The solvent was evaporated, and the crude product was purified by flash chromatography over silica gel, eluting with (2:1) EtOAC-hexanes, to afford 2.23 g (54% yield) of 26 and 0.27 g (14\%) of unreacted 23.

For 26: $R_{f} 0.30$ in (2:1) EtOAc-hexanes (char A); $\left.\alpha\right]_{\mathrm{D}} 36.3^{\circ}$ (c 0.9 , CHCl_{3}); IR (neat) $3600-3200$ (br), $1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $6.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.58(\mathrm{dd}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH})$, 4.41 (br t, $1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}$), 3.91 (s, $1 \mathrm{H}, \mathrm{H}-5$), 3.81 (m, $3 \mathrm{H}, \mathrm{H}-1$, $\mathrm{SO}_{2} \mathrm{NCH}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}$), $3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.51(\mathrm{dd}, J=9.3,5.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 3.45$ (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{SO}_{2}$), $3.39(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{SO}_{2}$), 3.37 (br s, $1 \mathrm{H}, \mathrm{OH}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 2.62 (m, $1 \mathrm{H}, 1 / 2 \mathrm{H}-7$), $2.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArMe}), 2.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 2.36$ (dd, $J=13.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-7), 2.06-1.23(\mathrm{~m}, 7 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}, 1 / 2 \mathrm{C}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92\left(\mathrm{~s}, 3 \mathrm{H}, 1 / 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 174.0, 171.7, $170.5(\mathrm{C}=\mathrm{O}), 157.8,138.5,128.5,123.4,123.3,109.2$ (Ar), 69.6 (C-5), $67.1,65.5\left(\mathrm{C}-1, \mathrm{C}-2^{\prime}\right), 62.0\left(\mathrm{CH}_{2} \mathrm{OH}\right), 56.8(\mathrm{OMe})$, 55.3 (ArCHN), 52.8 (C-10'), 48.5 (C-1'), 47.8 (C-3'), 45.1 (C-6), 44.4 (C-4'), 38.3 (C-6'), 35.7 (NMe), 33.7 (C-5'), 32.0 (C-7), 26.4 (C-7'), $20.9,19.8$ (C-8', C-9', ArMe); HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{~S}$ (M^{+}) 559.2352, found 559. 2322.
[3aR-[1[1S*,3($\left.\left.R^{*}\right), 5 R^{*}, 6 R^{*}{ }^{3} 3 \mathrm{a} \alpha, 6 \alpha, 7 a \beta\right]-1-[33$ [2-(Methoxymethoxy)-1-(2-methoxy-6-methylphenyl)ethyl]-8-methyl-2,4-dioxo-3,8-diazabicyclo-[3.2.1]oct-6-yljcarbonyl]hexahydro-8,8-dimethyl-2,2-dioxo-3H-3a,6-meth-ano-2,1-benzisothiazole (27). To an ice-cold solution of $26(1.07 \mathrm{~g}, 1.91$ mmol) and diisopropylethylamine ($2.22 \mathrm{~g}, 17.2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (22 mL) was added, dropwise, methoxymethyl chloride ($1.08 \mathrm{~g}, 13.4 \mathrm{mmol}$). The resulting solution was stirred at room temperature for 15 h when TLC analysis showed the reaction to be complete. At this point, $\mathrm{Et}_{2} \mathrm{O}$ (60 mL) was added and the mixture acidified to $\mathrm{pH} 2-3$ with 1 N HCl in an ice bath (two clear layers formed). The organic layer was separated off, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The combined organic layers were washed successively with saturated NaHCO_{3} solution (50 mL) and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography over silica gel, eluting with (3:2) EtOAc-hexanes, to afford 1.06 g (92% yield) of 27 as an oil: $R_{f} 0.54$ in ($2: 1$) EtOAc-hexanes (char $\mathrm{A}) ;[\alpha]_{\mathrm{D}}-9.5^{\circ}\left(c 2.6, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{t} . J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.71$ (br t, $2 \mathrm{H}, \mathrm{Ar}$), 5.90 (dd, $J=10.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.55(\mathrm{t}, J$ $=10 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{O}(\mathrm{MOM})$), 4.04 (dd, $J=10.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $1 / 2 \mathrm{CH}_{2} \mathrm{O}$ (MOM)), 3.89, (s, $1 \mathrm{H}, \mathrm{H}-5$), 3.83 (dd, $J=7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{SO}_{2} \mathrm{NCH}$), 3.76 (br, s, $4 \mathrm{H}, \mathrm{H}-1, \mathrm{ArOMe}$), 3.58 (dd, $J=9.2,5,5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 3.46\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.40(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{SO}_{2}$), $3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 2.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a})$, 2.53 (s, $3 \mathrm{H}, \mathrm{ArMe}$), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.23$ (dd, $J=13.4,9.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), $2.07-1.25(\mathrm{~m}, 7 \mathrm{H}), 1.12\left(\mathrm{~s}, 3 \mathrm{H}, 1 / 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94(\mathrm{~s}, 3$ $\left.\mathrm{H},{ }^{1} / 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,170.7,170.5$ $(\mathrm{C}=\mathrm{O}), 158.0,139.5,128.5,123.6,123.4,109.0(\mathrm{Ar}), 96.3\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, 69.7 (C-5), $67.6\left(\mathrm{CH}_{2} \mathrm{O}(\mathrm{MOM})\right), 66.6,65.5\left(\mathrm{C}-1, \mathrm{C}-2^{\prime}\right), 55.4,55.3$ (OMe), 52.9 ($\mathrm{C}-10^{\prime}$), 52.3 (ArCHN), 48.5 (C-1'), 47.9 (C-3'), 45.2 (C6), 44.4 (C-4'), 38.3 (C-6'), 35.5 (NMe), 32.7 (C-5'), 32.0 (C-7), 26.4 (C-7'), 20.9, 19.8 (C-8', C-9', PhMe); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{~S}$ $\left(\mathrm{M}^{+}\right) 603.2614$, found 603.2502 .
[3a $R-\left[1\left[1 S^{*}, 3\left(R^{*}\right), 5 R^{*}, 6 R^{*}\right] 3 \mathrm{a} \alpha, 6 \alpha, 7 a \beta\right]-1-[13-[2-(M e t h o x y m e t h o x y)-$ 1-(2-methoxy-6-(bromomethy1)pheny1)ethyl]-8-methyl-2,4-dioxo-3,8-diazabicyclo[3.2,1]oct-6-yl]carbony1]hexahydro-8,8-dimethyl-2,2-dioxo-3H-3a,6-methano-2,1-benzisothiazole (28). A solution of 27 and NBS (1.2 equiv) in dry $\mathrm{CHCl}_{3}(0.01 \mathrm{M}$ in 27) was added to a Pyrex tube (diameter 1.5 or 2.5 cm) and purged with N_{2} for 1 min . The resulting clear solution was photolyzed at $2537 \AA$ with efficient stirring for 2 h , and the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and stopped at the onset of aromatic bromination. The solvent was evaporated, and the residue was purified by flash chromatography over silica gel, eluting with EtOAchexanes. Owing to their similar chromatographic mobilities, 28 and unreacted 27 were collected together (generally in a ratio of $3: 1$) and used for the next reaction without further purification. However, an analytically pure sample of 28 could be obtained by PTLC on silica gel: $[\alpha]_{\mathrm{D}} 35.3^{\circ}\left(c 0.3, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.51$ in (2:1) EtOAc-hexanes (char A); IR (CHCl_{3}) 1735 (weak), $1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.20(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.81$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.91$ (dd, $J=10.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 4.96$ (d, $\left.J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{Br}\right), 4.76\left(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{O}(\mathrm{MOM})\right)$,
$4.68\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, $1 / 2 \mathrm{OCH}_{2} \mathrm{O}$), $4.59\left(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{Br}\right), 4.06$ (dd, $J=10.3$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{O}$ (MOM)), 3.88 (s, $1 \mathrm{H}, \mathrm{H}-5$), 3.81 (dd, $J=7.5$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NCH}$), $3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOMe}), 3.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1$ H, H-1), 3.58 (dd, $J=9.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $3.46(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1$ $\mathrm{H}, 1 / 2 \mathrm{SO}_{2} \mathrm{CH}_{2}$), $3.39\left(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{SO}_{2} \mathrm{CH}_{2}\right), 3.33(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{3}$), 2.63 (ddd, $J=13.1,7.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), $2.52(\mathrm{~s}, 3 \mathrm{H}$, NMe), 2.26 (dd, $J=13.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}), 2.1-1.2(\mathrm{~m}, 7 \mathrm{H}), 1.11$ (s, $\left.3 \mathrm{H},{ }^{1} / 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, 1 / 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.0,171.0(\mathrm{CO}), 138.8,129.4,123.9,123.7,111.8$ (Ar), 96.4 $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 69.9(\mathrm{C}-5), 66.8\left(\mathrm{CH}_{2} \mathrm{O}(\mathrm{MOM})\right), 66.7,65.6\left(\mathrm{C}-1, \mathrm{C}-2^{\prime}\right)$, 55.5, 55.4 (OMe), 53.0 (ArCHN), 52.9 (C-10'), 48.7 (C-1'), 47.9 (C-3'), 45.2 (C-6), 44.5 ($\mathrm{C}-4^{\prime}$), $38.4\left(\mathrm{C}-6^{\prime}\right), 35.6(\mathrm{NMe}), 32.8\left(\mathrm{C}-5^{\prime}\right), 32.2\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{Br}), 32.0$ (C-7), 26.5 (C-7'), 20.9, 19.9 (C-8', C-9'); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{SBr}^{79}$ ($\mathrm{M}^{+}-\mathrm{OMe}$) 650.1536 , found 650.1547 , calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{SBr}^{81}\left(\mathrm{M}^{+}-\mathrm{OMe}\right) 652.1516$, found 652.1289.

Phosphonium Salt 29. A solution of a (3:1) mixture of 28 and 27 (548 $\mathrm{mg}, 0.621 \mathrm{mmol}$) and triphenylphosphine ($316 \mathrm{mg}, 1.20 \mathrm{mmol}$) in dry CHCl_{3} (3 mL) was stirred at room temperature for 22 h when TLC analysis showed the reaction to be complete. The solution was concentrated to one-half volume and the product precipitated by the addition of $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The white solid was collected to afford 467 mg (48% yield in two steps from 27) of pure phosphonium salt 28. The filtrate was concentrated and the residue chromatographed over silica gel, eluting with (2:1) EtOAc-hexanes to recover 87 mg (11% yield) of 27. An analytical sample of 28 was obtained by flash chromatography over silica gel, eluting with (1:1) acetone- $\mathrm{CHCl}_{3}: \mathrm{mp}>200^{\circ} \mathrm{C}$ (dec); $R_{\mathrm{f}} 0.32$ in (1:1) acetone- CHCl_{3} (char B); $[\alpha]_{\mathrm{D}}-27.6^{\circ}\left(c 0.7, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ 1735 (weak), $1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.51$ (m, $15 \mathrm{H}, 3 \mathrm{Ph}), 7.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), 6.64 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.25(\mathrm{t}, J=15.1 \mathrm{~Hz}$, ABX, 1 H , ${ }^{1} / 2 \mathrm{CH}_{2} \mathrm{P}$), $5.03(\mathrm{dd}, J=9.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCHN}), 4.54(\mathrm{t}, J=15.0$ $\mathrm{Hz}, \mathrm{ABX}, 1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{CH}_{2} \mathrm{P}$), $4.31\left(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.23$ $\left(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{O}(\mathrm{MOM})\right), 4.19(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}$, $1 / 2 \mathrm{OCH}_{2} \mathrm{O}$), $3.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 3.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NCH}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}$, ArOMe), $3.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.54(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $1 / 2 \mathrm{SO}_{2} \mathrm{CH}_{2}$), $3.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.46\left(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{SO}_{2} \mathrm{CH}_{2}\right)$, $3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.10\left(\mathrm{dd}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{O}-\right.$ (MOM)), 2.61 (m, 1 H, H-7a), 2.49 (s, $3 \mathrm{H}, \mathrm{NMe}$), 2.1-1.3 (m, 8 H), $1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) $\delta 173.0,171.0,170.1(\mathrm{CO}), 160.9,135.3,134.2,134.1,130.4$, $130.2,130.0,127.6,127.5,124.8,124.7,124.4,124.3,117.6,116.5,113.0$ ($\mathrm{Ph} / \mathrm{Ar}$), $96.2\left(\mathrm{OCH}_{2} \mathrm{O}\right), 69.6(\mathrm{C}-5), 68.2\left(\mathrm{CH}_{2} \mathrm{O}(\mathrm{MOM})\right), 66.3,65.6$ ($\mathrm{C}-1, \mathrm{C}-2^{\prime}$), $56.1,55.4$ (OMe), $53.0\left(\mathrm{C}-10^{\prime}\right), 51.1$ (ArCHN), 48.6 (C1^{\prime}), 47.8 (C-3'), 45.4 (C-6), 44.4 (C-4'), 38.3 (C-6'), 35.9 (NMe), 32.7 (C-5'), $31.5(\mathrm{C}-7), 27.6\left(\mathrm{CH}_{2} \mathrm{P}\right), 26.3\left(\mathrm{C}-7^{\prime}\right), 20.9,19.9\left(\mathrm{C}-8^{\prime}, \mathrm{C}-9^{\prime}\right) ;$ FABMS (M - Br) ${ }^{+} 864$.
[5R-(5 $\left.\left.\alpha, 8 \beta, 10 \beta\left(3 \mathrm{a} R^{*} 6 S^{*}, 7 \mathrm{a} S^{*}\right), 11 \beta\right)\right]-1-[[5,7,8,9,10,11-$ Hexahydro-4-methoxy-5-[(methoxymethoxy)methyl]-13-methyl-7-ox0-8,11-iminoazepino[$1,2 b$]isoquinoline-10-yl]carbonyl]hexahydro-8,8-dimethyl-2,2-di-oxo- $\mathbf{3 H}$-3a,6-methano-2,1-benzisothiazole (31). A solution of 29 (1.16 $\mathrm{g}, 1.23 \mathrm{mmol})$ in dry DMF (15 mL) was added to a suspension of potassium tert-butyloxide ($152 \mathrm{mg}, 1.35 \mathrm{mmol}$) in DMF (10 mL). The resulting orange mixture was stirred at $120^{\circ} \mathrm{C}$ for 10 h when TLC analysis showed the reaction to be complete. The mixture was cooled to room temperature, quenched with pH 7 buffer (10 mL), and partitioned between $\mathrm{H}_{2} \mathrm{O}$ (50 $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue which was purified by flash chromatography over silica gel, eluting with (2:1) EtOAchexanes, to afford 568 mg (79% yield) of 31: $R_{f} 0.46$ in (4:1) EtOAchexanes (char A); $[\alpha]_{\mathrm{D}} 84.3^{\circ}\left(c 1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1680,1640$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.67$ (br t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 6.21 (dd, $J=6.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.69 (s, $1 \mathrm{H}, \mathrm{H}-12$), 4.61 (d, $\left.J=6.5,1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.50(\mathrm{~d}, J=6.5,1$ $\mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}$), 3.87 (m, $2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-2^{\prime}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.70$ (m, $2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-10$), $3.58-3.38$ (m, $4 \mathrm{H}, \mathrm{H}-14, \mathrm{H}-10^{\prime}$), 3.22 (s, 3 H , $\mathrm{CH}_{2} \mathrm{OCH}_{3}$), $2.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.33(\mathrm{~d}, J=13.2$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.14-1.23(\mathrm{~m}, 7 \mathrm{H}), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98(\mathrm{~s}$, $\left.\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,169.1(\mathrm{CO}), 155.1$ (Ar), 133.7, 131.6 (Ar, C-11a), 128.7, 117.6, 117.5, (Ar), 109.1 (C-12), $107.0(\mathrm{Ph}), 96.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 67.7\left(\mathrm{C}-2^{\prime}\right), 67.3(\mathrm{C}-14), 66.865 .7(\mathrm{C}-11$, $\mathrm{C}-8), 55.4(\mathrm{ArOMe}), 55.2\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 53.1\left(\mathrm{C}-10^{\prime}\right), 48.4\left(\mathrm{C}-1^{\prime}\right), 47.9$ (C-5), 47.8 (C-3'), 46.1 (C-10), 44.6 (C-4'), 38.5 (C-6'), 35.7 (NMe), 33.6 (C-9), 32.8 (C-5'), 26.4 (C-7'), 21.0, 19.9 (C-8', C-9'); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}^{+}\right)$585.2508, found 585.2491 .
[5R-($5 \alpha, 8 \beta, 10 \beta, 11 \beta)]-5,7,8,9,10,11-$ Hexahydro-4-methoxy-5-[(meth-oxymethoxy)methyl]-13-methyl-7-ox0-8,11-iminoazepino[1,2-b]isoquin-oline-10-carboxylic Acid, Methyl Ester (34). A suspension of 31 (60.5 $\mathrm{mg}, 0.103 \mathrm{mmol}$) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(64.4 \mathrm{mg}, 1.53 \mathrm{mmol})$ in ($2: 1$) THF$\mathrm{H}_{2} \mathrm{O}(4.6 \mathrm{~mL})$ was stirred at room temperature for 2 h . The resulting solution was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then extracted with (3:2) hexanes-EtOAc $(2 \times 10 \mathrm{~mL})$ to remove the sultam auxiliary 33 , which was recovered in 85% yield. The aqueous layer was acidified to $\mathrm{pH} 6-7$ by careful addition of 0.1 N HCl and was extracted with of (3:2) EtOAcTHF ($4 \times 20 \mathrm{~mL}$). The combined organic layers were dried over Na_{2} SO_{4}, filtered, and concentrated to give 40 mg (91% yield) of the carboxylic acid 32. This product was used directly, for the next reaction, but an analytical sample was obtained by PTLC on silica gel: $R_{\mathrm{f}} 0.15$ in (10:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (char A); $\left.\alpha\right]_{\mathrm{D}} 109.6^{\circ}\left(c 0.3, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1740$ (weak), $1680,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.73$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}), 6.19$ (dd, $J=6.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.74 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-12$), 4.60 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}$), $4.41\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right)$ 4.06 (s, $1 \mathrm{H}, \mathrm{H}-11$), 3.82 (s, $3 \mathrm{H}, \mathrm{ArOMe}$), $3.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-8$), 3.56 (m, 2 H, H-14), 3.28 (dd, $J=9.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 3.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), $2.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 2.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 2.50(\mathrm{~m}$, hidden under $\mathrm{NMe}, 1 \mathrm{H}, \mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.0$, 169.9 (CO, very weak), 155.2 (Ar), 133.1, 131.2 (Ar, C-11a), 129.0, 117.8, 117.2 (Ar), 109.6 (C-12), 107.2 (Ar), $96.7\left(\mathrm{OCH}_{2} \mathrm{O}\right), 67.1$ (C14), 66.1, 65.7 (C-8, C-11), 55.5, 55.3 (OMe), 47.6 (C-5), 46.4 (C-10), 35.1 (NMe), 34.4 (C-9); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 388.1634$, found 388.1634 . To an ice-cold solution of $32(56 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added ca. 0.6 M ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{76}$ in $1-\mathrm{mL}$ aliquots every 10 min (2 mL total). After removal of the excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$, the reaction mixture was partitioned between saturated $\mathrm{NaHCO} \mathrm{O}_{3}$ solution (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was flashed chromatographed over silica gel, eluting with (5:2) EtOAc-hexanes, to afford 40 mg (70% yield) of $34: R_{\mathrm{f}} 0.26$ in (2:1) EtOAc-hexanes (char $\mathrm{A}) ;[\alpha]_{\mathrm{D}} 92.2^{\circ}\left(c 1.37, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1735,1680,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16$ (dd, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), 6.70 (d, J $=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.19$ (dd, $J=6.2$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-12), 4.61\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2^{-}\right.$ $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.42\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11)$, $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.66(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-8), 3.55$ (m, 2 H, H-14), 3.27 (dd, $J=10.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), $3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 2.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.38$ (m , hidden under $\mathrm{NMe}, 1 \mathrm{H}, \mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2$ (Ar), 131.9, 131.0 (Ar, C-11a), 129.2, 118.0, 117.2 (Ar), 110.6 (C-12), 110.0 (Ar), $96.0\left(\mathrm{OCH}_{2} \mathrm{O}\right), 67.0(\mathrm{C}-14), 66.8,65.2$ (C-11, C-8), 55.5, 55.3, 52.9, (OMe), 46.8 (C-5), 46.5 (C-10), 35.2 (NMe), 33.9 (C-9); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 402.1791$, found 402.1794
$\left[5 R-\left(5 \alpha, 8 \beta, 10 \beta\left(3 a R^{*}, 6 S^{*}, 7 a S^{*}\right), 11 \beta, 11 \mathrm{a} \beta\right)\right]$-Hexahydro-8,8-di-methyl-1-[[5,7,8,9,10,11,11a,12-octahydro-4-methoxy-5-[(methoxy-methoxy)methyl]-13-methyl-7-ox0-8,11-iminoazepino(1,2-b]isoquinoline-10-yl]carbonyl]-2,2-dioxo-3H-3a,6-methano-2,1-benzisothiazole (35) and [$5 R$-($5 \alpha, 8 \beta, 10 \beta, 11 \beta, 11 \mathrm{a} \beta$)]-8,9,10,11,11a,12-Hexahydro-10-(hydroxy-methyl)-4-methoxy-5-[(methoxymethoxy)methyl]-13-methyl-8,11-imi-noazepino[1,2-b]isoquinoline-7(5H)-one (36). To a solution of 31 (266 $\mathrm{mg}, 0.459 \mathrm{mmol}$) in absolute ethanol (40 mL) was added 2.4 mL of a Raney-Ni (W-2) ${ }^{77}$ suspension (ca. 1.44 g). The resulting mixture was submitted to high-pressure hydrogenation (1400 psi) in a Parr bomb with efficient stirring at $65^{\circ} \mathrm{C}$ for 20 h . At this point, the reaction was depressurized, the catalyst filtered off, and the filtrate concentrated. The crude residue was chromatographed over silica gel, eluting successively with (4:1) EtOAc-hexanes followed by (8:1) EtOAc-MeOH, to afford 79.1 mg of 35 (30% yield) and 58.9 mg of 36 (35% yield).

For 35: $R_{\mathrm{f}} 0.32$ in (4:1) EtOAc-hexanes (char A); $[\alpha]_{\mathrm{D}}-33^{\circ}(c 1.24$, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 1690,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.58$ (br $\mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.19$ (dd, $J=9.7,3.3$ $\mathrm{Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-14), 3.99$ (dd, $J=8.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 3.90(\mathrm{t}, J=$ $\left.6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.82(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-12), 3.79$ (s, 3 H, ArOMe), 3.57 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $3.52-3.32$ (m, $5 \mathrm{H}, \mathrm{H}-10^{\prime}, 1 / 2 \mathrm{H}-14, \mathrm{H}-1 \mathrm{la}$, $\mathrm{H}-11$), 2.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), 2.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), 2.50 (dd, $J=12.7$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9,1 / 2 \mathrm{H}-12), 2.1-1.3$ (m, 7 H), 1.19 (s, $\left.3 \mathrm{H}, 1 / 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98\left(\mathrm{~s}, 3 \mathrm{H}, 1 / 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.1,171.0(\mathrm{CO}), 155.6,138.6,127.6,123.0,119.6,108.5$ (Ar), $96.2\left(\mathrm{OCH}_{2} \mathrm{O}\right), 67.9\left(\mathrm{C}-2^{\prime}\right), 67.5(\mathrm{C}-14), 67.0,65.8$ (C-11, C-8), 55.3, 54.5 (OMe), 53.3 (C-10'), 49.3 (C-5), 48.3 ($\left.\mathrm{C}-1^{\prime}\right), 47.8$ (C-3'), 44.8, 42.6 (C-4', C-11a), 38.7 (C-6'), 36.9, 36.8 (NMe, C-9), 33.0 (C-
$\left.5^{\prime}\right), 31.8$ (C-12), 26.4 (C-7'), 21.1, 19.9 (C-8', C-9'); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}^{+}\right) 587.2665$, found 587.2654

For 36: $R_{f} 0.29$ in (10:1) EtOAc-MeOH (char A); $[\alpha]_{\mathrm{D}}-108.3^{\circ}$ (c $1.25, \mathrm{CHCl}_{3}$; IR (CHCl_{3}) $3500-3100$ (weak), $1635 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}), 6.70$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), 5.60 (br s, $1 \mathrm{H}, \mathrm{H}-5$), 4.37 (d, $\left.J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.26\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right)$, 4.17 (dd, $J=10.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-14$), 3.82 (m, hidden under ArOMe, $1 \mathrm{H}, \mathrm{H}-11$), 3.79 (s, $3 \mathrm{H}, \mathrm{ArOMe}$), 3.70 (dd, $J=10.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}$, $1 / 2 \mathrm{H}-14), 3.56(\mathrm{~m}, 2 \mathrm{H}, 1 / 2 \mathrm{H}-12,1 / 2 \mathrm{CH} 2 \mathrm{OH}), 3.43(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-8$), $3.16-3.06\left(\mathrm{~m}, 2 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}-11 \mathrm{a}\right) ; 2.92$ (s, $3 \mathrm{H}, \mathrm{CH}_{2}-$ OCH_{3}), 2.68 ($\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{OH}$), $2.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 2.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}$), $2.40(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-12), 2.11(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-9$), 1.96 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-10$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3$ (CO), $155.8,138.8,127.9,122.7,119.5,108.7(\mathrm{Ar}), 96.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 68.0(\mathrm{C}-$ 14), $66.3\left(\mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}-11\right), 64.9(\mathrm{C}-8), 55.4(\mathrm{ArOMe}), 54.7\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$, 51.7 (C-5), 49.4 (C-11a), 38.2 (C-10), 35.0 (NMe), 34.9 (C-9), 31.9 (C-12); FABMS $(\mathrm{M}+1)^{+} 377$.
[$5 R-(5 \alpha, 8 \beta, 10 \beta, 11 \beta, 11 a \beta)]-(-)-5,7,8,9,10,11,11 a, 12-O c t a h y d r o-4-$ methoxy-5-[(methoxymethoxy)methyl]-13-methyl-7-ox0-8,11-iminoazepino $[1,2-b]$ isoquinoline-10-carboxylic Acid (37). The reaction was carried out with 35 by following the procedure described for $31 \rightarrow 34$ to afford 37 in 100% yield and recover (+)-sultam 33 in 88% yield. The analytical sample was obtained by PTLC on silica gel: $R_{\mathrm{f}} 0.28$ in (8:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (char A); mp 181-185 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-110.9^{\circ}\left(c 1.16, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1730,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.6(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}-5), 4.39\left(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right)$, $4.27\left(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.20(\mathrm{dd}, J=10.0,3.0 \mathrm{~Hz}, 1$ $\mathrm{H}, 1 / 2 \mathrm{H}-14$), 3.86 (br d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-12$), 3.81 (s, 3 H , ArOMe), 3.77 (br s, $1 \mathrm{H}, \mathrm{H}-11$), 3.67 (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 3.52 (d, $J=10.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-14), 3.36(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-10$), 3.18 (m, $1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}$), 2.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), 2.67-2.56 (m, $2 \mathrm{H}, \mathrm{H}-9,1 / 2 \mathrm{H}-12$), $2.63(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 2.36$ (dd, $J=13.2,10.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3$ (CO), 156.0137 .8 , 128.1, 122.0, 119.6, 108.8 (Ar), $96.2\left(\mathrm{OCH}_{2} \mathrm{O}\right), 67.8(\mathrm{C}-14), 65.9,65.5$ (C-8, C-11), 55.4, 54.8 (OMe), 52.5 (C-5), 49.6 (C-11a), 41.7 (C-10), 35.2 (NMe), 34.5 (C-9), 31.8 (C-12); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$ $\left(\mathrm{M}^{+}\right) 390.1791$, found 390.1788.
[5R-(5 $\alpha, 8 \beta, 10 \beta, 11 \beta, 11 a \beta)]-5,7,8,9,10,11,11 a, 12$-Octahydro-4-meth-oxy-5-[(methoxymethoxy)methyl]-13-methyl-7-ox0-8,11-iminoazepino-[1,2-b]isoquinoline-10-carboxylic Acid, Methy1Ester (38). From 37: The reaction of 37 with $0.6 \mathrm{M} \mathrm{CH}_{2} \mathrm{~N}_{2}-\mathrm{Et}_{2} \mathrm{O}$ was carried out by following the procedure described for $\mathbf{3 1} \rightarrow \mathbf{3 4}$ to afford $\mathbf{3 8}$ in $\mathbf{4 3 \%}$ yield. From 34: The high-pressure hydrogenation reaction from 34 was carried out by following the procedure described for $\mathbf{3 1} \rightarrow \mathbf{3 5}$ to afford $\mathbf{3 8}$ in 67% yield (based on 19\% recovered 34): $R_{\mathrm{f}} 0.29$ in (2:1) EtOAc-hexanes (char A); $[\alpha]_{\mathrm{D}}-127.7^{\circ}\left(c 1.22, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1705,1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.77(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 5.60$ (br d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.42 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.29\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.20(\mathrm{dd}, J=10.0$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-14), 3.87(\mathrm{dd}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-12), 3.82$ (s, 3 H, ArOMe), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.65 (br d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-11), 3.58-3.54 (m, 2 H, H-8, $1 / 2 \mathrm{H}-14$), 3.36 (dd, $J=9.7,6.7 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-10), 3.15(\mathrm{t}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}), 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$, 2.63 (m, 1 H, H-9), 2.54 (dd, $J=14.3,2.4, \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-12$), 2.50 (s, $3 \mathrm{H}, \mathrm{NMe}), 2.30$ (dd, $J=13.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$) ; ${ }^{13} \mathrm{C}$ NMR (75 MHz $\left.\mathrm{CDCl}_{3}\right) \delta 174.9,171.0(\mathrm{CO}), 155.7,138.2,127.9,122.7,119.5,108.7$ (Ar), $96.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 68.0(\mathrm{C}-14), 67.1,66.4(\mathrm{C}-11, \mathrm{C}-8), 55.3$ (ArOMe), $54.7,54.3$ (OMe), 52.4 (C-5), 49.4 (C-11a), 41.3 (C-10), 37.0 (NMe), 34.4 (C-9), 32.1 (C-12); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{HN}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 404.1947$, found 404.1963.

General Procedure for Lactam Partial Reduction and Cyanation. A 10 -fold volume of liquid ammonia (distilled from Na) at $-78^{\circ} \mathrm{C}$ was condensed into a solution of lactam (37 or 36) in THF ($1 \mathrm{~mL} / 0.024$ mmol of substrate). To this clear solution was added 100 equiv of lithium metal (cleaned and weighed under xylene). The resulting deep blue mixture was refluxed at $-25^{\circ} \mathrm{C}$ for 15 min when ethanol was slowly injected until the deep blue color faded. After stirring for additional 5 $\mathrm{min}, 3.5$ equiv of solid ammonium chloride was introduced and then the ammonia evaporated under a flow of nitrogen at room temperature. Saturated aqueous sodium bicarbonate (two times the THF volume) was added just prior to the final evaporation (white precipitates formed). The mixture was acidified to $\mathrm{pH} 6-7$ with 1 N HCl at $0^{\circ} \mathrm{C}$, and the resulting solution was treated with 0.1 M NaCN (1.8 equiv) and stirred room temperature for 15 h . If necessary, the reaction mixture was acidified
to pH 6-7 again. The product was extracted out with (1:1) THF-EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue which was purified by flash chromatography over silica gel, eluting with $\mathrm{EtOAc}+\mathrm{AcOH}(1$ drop $/ 10 \mathrm{~mL}$), to afford the pure aminonitrile (39 or 40).
[5R-(5 $\alpha, 7 \beta, 8 \beta, 10 \beta, 11 \beta, 11 \mathrm{a} \beta)$]-7-Cyano-5,7,8,9,10,11,11a,12-octahy-dro-4-methoxy-5-[(methoxymethoxy)methyl]-13-methyl-8,11-iminoaze-pino[1,2-b]isoquinoline-10-carboxylic Acid (39): 63% yield; $R_{\mathrm{f}} 0.39$ in $\mathrm{EtOAc}+\mathrm{AcOH}(1$ drop $/ 10 \mathrm{~mL})($ char A$) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.70(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 4.61(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.54\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right)$, 4.35 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.22(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7)$, 3.80 (s, 3 H, ArOMe), 3.74 (dd, $J=9.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-14$), 3.49 (s, $1 \mathrm{H}, \mathrm{H}-11$), $3.47-3.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$, $3.32-3.28(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-14), 3.23$ (dd, $J=9.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 3.06$ (br d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}), 2.64-2.53(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-12), 2.38$ (s, $3 \mathrm{H}, \mathrm{NMe}$), 2.07 (dd, $J=13.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.2(\mathrm{C}=\mathrm{O}), 155.8,136.2,127.9,121.6,120.3$, (Ar), $118.4(\mathrm{CN}), 108.5(\mathrm{Ar}), 96.7\left(\mathrm{OCH}_{2} \mathrm{O}\right), 74.1(\mathrm{C}-14), 70.6(\mathrm{C}-11), 64.5$ (C-8), 58.7, 57.4 (C-7, C-11a), 55.8, 55.4 (2 OMe), 55.3 (C-5), 42.7 (C-10), 41.5 (NMe), 32.8 (C-9), 28.8 (C-12); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right) 370.1767$, found 370.1792 .
$[5 R-(5 \alpha, 7 \beta, 8 \beta, 10 \beta, 11 \beta, 11 \mathrm{a} \beta)]-5,7,8,9,10,11,11 \mathrm{a}, 12$-Octahydro-10-(hydroxymethyl)-4-methoxy-5-[(methoxymethoxy)methyl]-13-methyl-8,11-iminoazepino(1,2-b]isoquinoline-7-carbonitrile (40): 56% yield; R_{f} 0.38 (10:1) EtOAc-MeOH (char A); IR $\left(\mathrm{CHCl}_{3}\right) 1590,1470 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.69(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{Ar}), 4.61\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}\right), 4.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1$ $\mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{O}$), 4.36 (dd, $J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.19 (d, $J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 3.80 ($\mathrm{s}, 3 \mathrm{H}$, ArOMe), $3.78-3.71$ (m, $2 \mathrm{H}, 1 / 2 \mathrm{H}-14$, $\mathrm{H}-11$), $3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.48$ (br d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 3.32-3.34 (m, $1 \mathrm{H}, 1 / 2 \mathrm{H}-14$), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right.$), 3.15 (br d, $J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}$), 2.98 (s, $1 \mathrm{H}, \mathrm{OH}$), 2.65 (s, $3 \mathrm{H}, \mathrm{NMe}$), 2.68-2.54 (m, $2 \mathrm{H}, 1 / 2 \mathrm{H}-12, \mathrm{H}-9$), 2.43 (dd, $J=14.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-12$), 1.98-2.06 (m, 1 H, H-9), 1.92-1.86 (m, 1 H, H-10); ${ }^{13} \mathrm{CNMR}$ (75 MHz , CDCl_{3}) $\delta 155.9,136.6,127.9,121.6,120.1$ (Ar), $119.0(\mathrm{CN}), 108.5$ $(\mathrm{Ph}), 96.7\left(\mathrm{OCH}_{2} \mathrm{O}\right), 74.3(\mathrm{C}-14), 67.6(\mathrm{C}-11), 66.8\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.8$ (C-8), 56.3, 55.9, 55.4, 55.2, (2OMe, C-7, C-5), 53.3 (C-11a), 40.0 (C10), 38.4 (NMe), 32.7 (C-9), 31.2 (C-12); HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+1)^{+} 388.2236$, found 388.2177 .
[5R-(5 $\alpha, 7 \beta, 8 \beta, 10 \beta, 11 \beta, 11 a \beta)$]-7-Cyano-5,7,8,9,10,11,11a,12-octahy-dro-5-(hydroxymethyl)-4-methoxy-13-methyl-8,11-iminoazepino 1,2 - b]-isoquinoline-10-carboxylic Acid, DX-52-1 (3). To a solution of 39 (20 $\mathrm{mg}, 0.05 \mathrm{mmol}$) and $\mathrm{NaI}(78 \mathrm{mg}, 0.52 \mathrm{mmol})$ in dry $\mathrm{MeCN}(4 \mathrm{~mL})$ was added, dropwise, (TMS)Cl ($43 \mathrm{mg}, 0.40 \mathrm{mmol}$) at room temperature. The resulting brown mixture was stirred for 2 h , and then treated with excess $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ to remove iodine. The solid was filtered off through Celite and the pale yellow filtrate concentrated to give a crude product which was purified by flash chromatography over silica gel, eluting with (8:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ to afford 12.8 Mg (72% yield) of $3: R_{\mathrm{f}} 0.20 \mathrm{in}$ (8:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (char A); $[\alpha]_{\mathrm{D}} 35^{\circ}$ (c $0.51, \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), 6.91 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 4.72$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 4.37 (br d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $4.30(\mathrm{dd}, J=5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.25$ (s, 1H, H-11), $3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.78$ (dd, $J=11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $1 / 2 \mathrm{H}-14$), 3.67 (dd, $J=11.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{H}-14$), 3.48 (dd, $J=10.5$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 3.20 (dd, $J=9.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}$), $2.85-2.71$ (m, 3H, H-9, H-12), 2.82 (s, $3 \mathrm{H}, \mathrm{NMe}$), 2.47 (dd, $J=14.4,10.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 179.3$ ($\mathrm{C}=\mathrm{O}$), 155.7, 135.9, $128.7,121.0,120.5(\mathrm{Ar}), 116.2(\mathrm{CN}), 109.7$ (Ar), 71.2 (C-14), 65.4, 64.7 (C-8, C-11), 57.1, 56.5, 56.4 (C-7, C-11a, OMe), 55.6 (C-5), 42.1(C10), 40.2 (NMe), 31.2 (C-9), 28.6 (C-12); HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+1)+358.1767$, found 358.1777 .
[2aR-(2a $\alpha, 3 \alpha, 5 \alpha, 6 \alpha, 6 \mathrm{a} \alpha, 11 \mathrm{~b} \alpha)]-2 \mathrm{a}, 3,4,5,6,6 \mathrm{a}, 7,11 \mathrm{~b}-O c t a h y d r o-11-$ methoxy-12-methyl-3,6-imino-1H-oxa-11c-azanaphth[$1,2,3$-cd]azulene-5-carboxylic Acid, (-)-Quinocarcin (1). A suspension of 3 (12.2 mg , 0.034 mmol) and $\mathrm{AgNO}_{3}(23.3 \mathrm{mg}, 0.137 \mathrm{mmol})$ in of $(4: 1) \mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was stirred at room temperature for 4 h . A large excess of basic ion-exchange resin (Amberlite IRA-401, Cl^{-}form) was added to remove $\mathrm{Ag}(\mathrm{I})$. After stirring at room temperature for 30 min , the solid was filtered through Celite and the filtrate was concentrated to afford pure quinocarcin ($10.6 \mathrm{mg}, 94 \%$ yield). The analytical sample was obtained by reverse-phase HPLC (C 18 column, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ linear gradient from $50-70 \% \mathrm{MeOH}$ between 1.5 and 2.5 min , flow rate $=1.0$ $\left.\mathrm{mL} / \mathrm{min}): t_{\mathrm{R}} 4.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}-30^{\circ}\left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right)\right]$ lit. ${ }^{1 \mathrm{a}}[\alpha]_{\mathrm{D}}-32^{\circ}(c 0.50$, $\left.\mathrm{H}_{2} \mathrm{O}\right)$]; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.94$
(d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 4.95$ (d, $J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 4.49(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{Ib}), 4.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6)$, 3.96 (m, 1 H, H-3), 3.86 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.72-3.60 (m, $2 \mathrm{H}, \mathrm{H}-1$), 3.47 (dd, $J=9.9,4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}$), 2.79 (s, $3 \mathrm{H}, \mathrm{NMe}$), 275 (m, 2H, H-7), 2.60-2.52 (m, $1 \mathrm{H}, \mathrm{H}-4$), 2.43 (dd, $J=14.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 181.1$ (CO), $156.8,137.7,129.3,123.6$, 121.5, 110.5 (Ar), 82.3 (C-2a) 72.3, 70.1, (C-3, C-6), 65.9 (C-1), 56.5 (OMe), 54.7 (C-11b), 54.2 (C-6a), 42.0 (C-5), 40.6 (NMe), 32.4 (C-4), 27.9 (C-7); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{O}\right) 300.1474$, found 300.1464.

Acknowledgment. This work was supported by Public Health Service Grant GM 38805 administered by the National Institute
of General Medical Sciences. We are grateful to the chemistry alumini of CWRU for providing a Chemistry Alumni Fellowship to Wen Bin Ho. Special thanks to Drs. Hirata and Saito (Kyowa Hakko Kogyo, Tokyo) for providing us with authentic samples of quinocarcin citrate and DX-52-1 and Professor Fukuyama (Rice University) for sending us experimental details associated with his (\pm)-quinocarcin synthesis.

Supplementary Material Available: Proton NMR spectra for all compounds and plots of the complete NOESY experiment for quinocarcin citrate (35 pages). Ordering information is given on any current masthead page.

[^0]: * Abstract published in Advance ACS Abstracts, October 1, 1993.
 (1) (a) Takahashi, K.; Tomita, F. J. Antibiot. 1983, 468. (b) Hirayama, N.; Shirahata, K. J. Chem. Soc., Perkin Trans. 2 1983, 1705.
 (2) (a) Tomita, F.; Takahashi, K.; Tamaoki, T. J. Antibiot. 1984, 37, 1268. (b) Fujimoto, K.; Oka, T.; Morimoto, M. Cancer Res. 1987, 47, 1516. (c) Kanamaru, R.; Konishi, Y.; Ishioka, C.; Kakuta, H.; Sato, T.; Ishikawa, A.; Asamura, M.; Wakui, A. Cancer Chemother. Pharmacol. 1988, 22, 197.
 (3) Williams, R. M.; Glinka, T.; Flanagan, M. E.; Gallegos, R.; Coffman, H.; Pei, D. J. Am. Chem. Soc. 1992, 114, 733.
 (4) (a) Saito, H.; Hirata, T. Tetrahedron Lett. 1987, 28, 4065. (b) Saito, H.; Kobayashi, S.; Uosaki, Y.; Sato, A.; Fujimoto, K.; Miyoshi, K.; Morimoto, A.; Hirata, T. Chem. Pharm. Bull. 1990, 38, 1278 .

[^1]: (5) (a) Suzuki, K.; Sato, T.; Morioka, M.; Nagai, K.; Abe, K.; Yamaguchi, H.; Saito, T.; Ohmi, Y.; Susaki, K. J. Antibiot. 1991, 44, 479. (b) Sato, T.; Hirayama, F.; Saito, T.; Kaniwa, H. J. Antibiot. 1991, 44, 1367.
 (6) Hill, G. C.; Wunz, T. P.; Remers, W. A. J. Comput.-Aided Mol. Des. 1988, 2,6029 . In this paper, the configuration at $\mathrm{C}-6$ a was erroneously inverted in the ($2 \mathrm{a} R, 11 \mathrm{cR}$) diastereomer, possibly accounting for the rather high energy difference between this structure and that found for ($2 \mathrm{a} R, 1 \mathrm{l} \mathrm{CS}$)quinocarcin.
 (7) Zmijewski, M. J., Jr.; Paliniswamy, V. A.; Gould, S. J. J. Chem. Soc., Chem. Commun. 1985, 1261.
 (8) (a) Illig, C. R. The Total Synthesis of (\pm)-Cyanocycline A and $(+)$-Cyanocycline A. Ph.D. Dissertation, Harvard University, Cambridge, MA, 1987. (b) Fukuyama, T.; Li, L. Total Synthesis of (+)-Naphthyridinomycin (ORGN 272). 21st ACS Central Regional Meeting (May 31-June 2,1989), Cleveland, OH. Fukuyama, T. In Advances in Heterocyclic Natural Product Synthesis; Pearson, W. H., Ed.; JAI Press: Greenwich, CT, 1992; Vol 2, p 189.
 (9) (a) (土)-3: Danishefsky, S. J.; Harrison, P. J.; Webb, R. R.; O'Neil, B. T. J. Am. Chem. Soc. 1985, 107, 1421. (b) (\pm)-1: Fukuyama, T.; Nunes, J. J. Ibid. 1988, $110,5196$.
 (10) (a) Saito, S.; Matsuda, F.; Terashima, S. Tetrahedron Lett. 1988, 29, 6301. (b) Sato, S.; Tanaka, K.; Nakatani, K.; Matsuda, F.; Terashima, S. Ibid. 1989, 30, 7423. (c) Lessen, T. A.; Demko, D. M.; Weinreb, S. M. Ibid. 1990, 31, 2105.
 (11) Preliminary communication: Garner, P.; Ho, W. B.; Shin, H. J. Am. Chem. Soc. 1992, 114, 2767.
 (12) For a related approach to quinocarcin, see: (a) Kiss, M.; RussellMaynard, J.; Joule, J. A. Tetrahedron Lett. 1987, 28, 2187. (b) Allway, P. A.; Sutherland, J. K.; Joule, J. A. Ibid. 1990, 31, 1012.

[^2]: (16) For a related approach to the 3,8-diazabicyclo[3.2.1]octane portion of quinocarcin based on 1,3-dipolar cycloaddition to achiral 2-oxidopyrazinium species, see: Kiss, M.; Russell-Maynard, J.; Joule, J. A. Tetrahedron Lett. 1987, 28, 2187. Allway, P. A.; Sutherland, J. K.; Joule, J. A. Ibid. 1990, 31, 4781.
 (17) Hauser, F. M.; Ellenberger, S. R. Synthesis 1987, 723.
 (18) Ogura, K.; Ito, Y.; Tuchihashi, G. Bull. Chem. Soc. Jpn. 1979, 52, 2013.
 (19) Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am. Chem. Soc. 1990, 112, 4011.
 (20) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.

[^3]: (21) Scheiner, P. J. Org. Chem. 1965, 30, 7.
 (22) Vandewalle, M.; Van der Eycken, J.; Oppolzer, W.; Vullioud, C. Tetrahedron 1986, 42, 4035. For an improved synthesis of compound 25 , see: Thom, C.; Kocienski, P. Synthesis 1992, 582.
 (23) Cf. Kim, B. H.; Curran, D. P. Tetrahedron 1993, 49, 293. We thank Professor Curran for providing us a copy of this review article prior its publication.

[^4]: (29) Olah, G. A.; Narang, S. C.; Gupta, B. G. B.; Malhotra, R. J. Org. Chem. 1979, 44, 1247.
 (30) Fukuyama attempted to purify his synthetic quinocarcin by normalphase PTLC on silica gel, eluting with (1:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$, but found that the resulting ${ }^{1} \mathrm{H}$ NMR spectrum was quite different from that reported in the literature. However, when natural quinocarcin was submitted to these same PTLC conditions, the same spectrum was obtained and identity concluded. (T. Fukuyama, personal communication.)

